三角形全等的条件教案3_八年级数学教案
教学目标
1.三角形全等的条件:角边角、角角边.
2.三角形全等条件小结.
3.掌握三角形全等的“角边角”“角角边”条件.
4.能运用全等三角形的条件,解决简单的推理证明问题.
教学重点
已知两角一边的三角形全等探究.
教学难点
灵活运用三角形全等条件证明.
教学过程
Ⅰ.提出问题,创设情境
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:①定义;②sss;③sas.
2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
Ⅱ.导入新课
问题1:三角形中已知两角一边有几种可能?
1.两角和它们的夹边.
2.两角和其中一角的对边.
问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.
提炼规律:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“asa”).
问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形abc,能不能作一个△a′b′c′,使∠a=∠a′、∠b=∠b′、ab=a′b′呢?
①先用量角器量出∠a与∠b的度数,再用直尺量出ab的边长.
②画线段a′b′,使a′b′=ab.
③分别以a′、b′为顶点,a′b′为一边作∠da′b′、∠eb′a,使∠d′ab=∠cab,∠eb′a′=∠cba.
④射线a′d与b′e交于一点,记为c′
即可得到△a′b′c′.
将△a′b′c′与△abc重叠,发现两三角形全等.
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“asa”).
思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“asa”推出“两角和其中一角的对边对应相等的两三角形全等”呢?
两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“aas”).