多状态机的协同设计_EDAPLD论文
传统上在系统级和寄存器传输级完成vhdl 的描述主要分以下几步:
(1) 分析控制器设计指标, 建立系统算法模型图;
(2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
(3) 应用vhdl 语言完成描述。
使用xilinx的ise6.1软件包的辅助工具statecad能加速有限状态机设计,大大简化状态机的设计过程,实现状态机设计的自动化。使用statecad进行状态机设计的流程如下:
(1) 分析控制器设计指标, 建立系统算法模型图;
(2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
(3) 在statecad中输入有限状态机状态图,自动产生vhdl模型描述,使用statebench进行状态转移分析,分析无误后使用导出vhdl模型块到ise中进行仿真后综合,实现到cpld或fpga的映射。
设计人员的主要工作在第一步。第二步,第三步基本上可以通过statecad完成有限状态机的自动生成和分析,还可以利用分析结果来对被控对象的逻辑进行分析,改进,完善系统控制逻辑。
在需要并行处理的场合,往往需要采用多状态机来完成系统的控制任务,这时状态机之间的同步问题往往是设计者需要仔细考虑的问题。如果采用完全人工输入代码的方法来设计,往往力不从心。采用statecad完成整个控制逻辑的设计并对设计结果进行验证更能体现cad设计方法的优势,加速产品开发进度,提高设计生产率。
下面以一个双状态机设计过程来介绍如何使用statecad进行多状态机的协同设计。
有二个状态机,一个负责对m0写,一个负责对m0读操作,为了简单起见,系统已经尽量简化了。
负责对m0写的状态机包括四个状态:
state0:写状态机复位后初始化;
write0:对m0写,写满4个转到m0full;
m0full:m0满状态;
m0writewait:等待。m0满时转入write0状态。
负责对m0读的状态机包括四个状态:
state1:读状态机复位后初始化
read0:对m0读,读4个转到m0empty
m0empty:m0空状态
m0readwait:等待。m0空时转入read0状态
负责对m0写的状态机必须知道m0是空的,而负责对m0读的状态机必须知道m0是满的才能读。读完了通知负责对m0写的状态机m0是空的,可以写了。二个状态机同时并行工作。m0写的状态机在写操作完了,就等待m0空。m0读的状态机在读操作完了,就等待m0满。在statecad中,状态本身可以作为其他状态机的转移条件。这也正是在进行多状态机的协同设计中最需要的功能,能大大方便多状态机的设计。
输入完状态图,就基本完成了状态机的设计过程。进行逻辑优化(工具自动进行逻辑优化)后,使用statebench进行状态转移分析。以下是自动状态转移模拟波形。
由以上的波形看到状态机的工作过程符合设计逻辑。对单独的器件操作也许不需要采用多状态机的设计方法,但在多器件需要并行工作时,多状态机的协同设计就显得必要了。导出vhdl模型块到ise中进行仿真后综合,这里就不多讲了,以下是产生的代码:
-- d:\xilinxtutorial\duoztji.vhd
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.std_logic_unsigned.all;
entity shell_duoztji is
port (clk,reset: in std_logic;
dcounter0,dcounter1 : out std_logic);
signal bp_dcounter0,bp_dcounter1,readcounter0,readcounter1: std_logic;
end;
architecture behavior of shell_duoztji is
signal sreg : std_logic_vector (1 downto 0);
signal next_sreg : std_logic_vector (1 downto 0);
constant m0full : std_logic_vector (1 downto 0) :="00";
constant m0writewait : std_logic_vector (1 downto 0) :="01";
constant state0 : std_logic_vector (1 downto 0) :="10";
constant write0 : std_logic_vector (1 downto 0) :="11";
signal sreg1 : std_logic_vector (1 downto 0);
signal next_sreg1 : std_logic_vector (1 downto 0);
constant m0empty : std_logic_vector (1 downto 0) :="00";
constant m0readwait : std_logic_vector (1 downto 0) :="01";
constant read0 : std_logic_vector (1 downto 0) :="10";
constant state1 : std_logic_vector (1 downto 0) :="11";
signal next_bp_dcounter0,next_bp_dcounter1,next_readcounter0,
next_readcounter1 : std_logic;
signal bp_dcounter : std_logic_vector (1 downto 0);
signal dcounter : std_logic_vector (1 downto 0);
signal readcounter : std_logic_vector (1 downto 0);
begin
process (clk, next_sreg, next_bp_dcounter1, next_bp_dcounter0)
begin
if clk='1' and clk'event then
sreg <= next_sreg;
bp_dcounter1 <= next_bp_dcounter1;
bp_dcounter0 <= next_bp_dcounter0;
end if;
end process;
process (clk, next_sreg1, next_readcounter1, next_readcounter0)
begin
if clk='1' and clk'event then
sreg1 <= next_sreg1;
readcounter1 <= next_readcounter1;
readcounter0 <= next_readcounter0;
end if;
end process;
process (sreg,sreg1,bp_dcounter0,bp_dcounter1,readcounter0,readcounter1,
reset,bp_dcounter,readcounter)
begin
next_bp_dcounter0 <= bp_dcounter0;next_bp_dcounter1 <= bp_dcounter1;
next_readcounter0 <= readcounter0;next_readcounter1 <= readcounter1;
bp_dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)));
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
next_sreg<=m0full;
next_sreg1<=m0empty;
if ( reset='1' ) then
next_sreg<=state0;
bp_dcounter <= (std_logic_vector'("00"));
else
case sreg is
when m0full =>
next_sreg<=m0writewait;
bp_dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)));
when m0writewait =>
if ( (sreg1=m0empty)) then
next_sreg<=write0;
bp_dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)) + std_logic_vector'("01"));
else
next_sreg<=m0writewait;
bp_dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)));
end if;
when state0 =>
next_sreg<=write0;
bp_dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)) +
std_logic_vector'("01"));
when write0 =>
if ( bp_dcounter0='1' and bp_dcounter1='1' ) then
next_sreg<=m0full;
bp_dcounter <= (std_logic_vector'("00"));
else
next_sreg<=write0;
bp_dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)) +
std_logic_vector'("01"));
end if;
when others =>
end case;
end if;
if ( reset='1' ) then
next_sreg1<=state1;
readcounter <= (std_logic_vector'("00"));
else
case sreg1 is
when m0empty =>
next_sreg1<=m0readwait;
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
when m0readwait =>
if ( (sreg=m0full)) then
next_sreg1<=read0;
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)) +
std_logic_vector'("01"));
else
next_sreg1<=m0readwait;
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
end if;
when read0 =>
if ( readcounter0='1' and readcounter1='1' ) then
next_sreg1<=m0empty;
readcounter <= (std_logic_vector'("00"));
else
next_sreg1<=read0;
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)) +
std_logic_vector'("01"));
end if;
when state1 =>
if ( (sreg=m0full)) then
next_sreg1<=read0;
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)) + std_logic_vector'("01"));
else
next_sreg1<=state1;
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
end if;
when others =>
end case;
end if;
next_bp_dcounter1 <= bp_dcounter(1);
next_bp_dcounter0 <= bp_dcounter(0);
next_readcounter1 <= readcounter(1);
next_readcounter0 <= readcounter(0);
end process;
process (bp_dcounter0,bp_dcounter1,dcounter)
begin
dcounter <= (( std_logic_vector'(bp_dcounter1, bp_dcounter0)));
dcounter0 <= dcounter(0);
dcounter1 <= dcounter(1);
end process;
end behavior;
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.std_logic_unsigned.all;
entity duoztji is
port (dcounter : out std_logic_vector (1 downto 0);
clk,reset: in std_logic);
end;
architecture behavior of duoztji is
component shell_duoztji
port (clk,reset: in std_logic;
dcounter0,dcounter1 : out std_logic);
end component;
begin
shell1_duoztji : shell_duoztji port map (clk=>clk,reset=>reset,dcounter0=>
dcounter(0),dcounter1=>dcounter(1));
end behavior;