学海荡舟手机网

主页 > 实用文摘 > 教育文摘_21 > > 详细内容

概率的意义教案1_高二数学教案


    【课题】25.1.2 概率的意义(第一课时)
    【教材】义务新课程标准实验教科书人教版九年级上册
    【授课教师】安徽省淮北市第二中学 邱广东
    【教学目标】
    〈一〉知识与技能
    1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
    2.在具体情境中了解概率的意义
    〈二〉教学思考
    让经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的模型.初步理解频率与概率的关系.
    〈三〉解决问题
    在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
    〈四〉情感态度与价值观
    在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
    【教学重点】在具体情境中了解概率意义.
    【教学难点】对频率与概率关系的初步理解
    【教具准备】壹元硬币数枚、图钉数枚、多媒体
    【教学过程】
    一、创设情境,引出问题
    教师提出问题:周末市体育场有一场精彩的篮球比赛,手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
    学生:抓阄、抽签、猜拳、投硬币,……
    教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)
    追问,为什么要用抓阄、投硬币的方法呢?
    由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大
    在学生讨论发言后,教师评价归纳.
    用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.
    质疑:那么,这种直觉是否真的是正确的呢?
    引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
    说明:现实中不确定现象是大量存在的, 新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.
    二 、动手实践,合作探究
    1.教师布置试验任务.
    (1)明确规则.
    把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
    (2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来..
    2.教师巡视学生分组试验情况.
    注意:
    (1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
    (2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
    3.各组汇报实验结果.
    由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.
    提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.
    在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.
    解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
    4.全班交流.
    把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上p140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.
    三、评价概括,揭示新知
    问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?
    学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
    通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.
    归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
    那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件a发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件a的概率(probability), 记作p(a)= p.
    注意指出:
    1.概率是随机事件发生的可能性的大小的数量反映.
    2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
    想一想(学生交流讨论)
    问题2.频率与概率有什么区别与联系?
    从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
    说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
    四.练习巩固,发展提高.
    学生练习
    1.书上p143.练习.1.  巩固用频率估计概率的方法.
    2.书上p143.练习.2   巩固对概率意义的理解.
    教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
    五.归纳,交流收获:
    1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.
    2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.
    【作业设计】
    (1)完成p144 习题25.1  2、4
    (2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.
    【教学设计说明】
    这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.
    1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.
    贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.
    2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学

[1]