学海荡舟手机网

主页 > 实用文摘 > 教育文摘_12 > > 详细内容

背投电视技术_消费类电子论文

摘  要:背投显示技术正处于蓬勃发展时期,本文介绍了背投显示技术的基本光路原理,以及当前技术背景下,几种主要背投电视技术的应用和发展前景。并且对笔者所从事的lcos背投领域做一下重点介绍。

    关键词:背投技术、液晶显示、数字光处理、硅基液晶

    1、 背投显示技术

    背投(rear projector)的定义是相对于传统的前投(front projector)而言的。二者的主要区别在于图像光线的来源方式。前投系统中,观察者和投影机位于反射屏幕的同一侧,投影机投射出的光线照射到屏幕后,再经过反射到达观察者;而背投系统中,观察者和投影机位于显示屏幕的两侧,从投影机发出的光线照射到半透明的显示屏幕上,部分透过后形成图像,所以观察者看到的是透射出来的光,其原理如图1:

    图1:背投原理图

    通常人们提到的多媒体投影机主要是指前投影机,与它们相比背投影的优势在于背投系统中投影机和屏幕是一个整体,用户使用时无需进行光学调整,像使用普通电视机一样简单。此外背投系统中光学投影机封闭在一个箱体内,投射到屏幕上的光线不会受到外界光线影响,因此在较暗或较亮的环境下都可以完好地显示图像。正是基于这些原理产生了背投电视,由于采用的不同的投影机种类,背投技术可以分为crt(阴极射线管)、lcd(液晶)、lcos(硅基液晶)、dlp(数字光处理)等几种。到目前为止,crt背投电视的技术最为成熟,生产规模较大,性价比高,依然是国内背投电视市场的主流产品。但crt背投是靠荧光粉发光,很难提升亮度,容易使显像管老化,时间长了,画面会变暗,清晰度降低。鉴于此,随着其他三种技术的逐渐成熟,市场必将重新分割,谁将占据未来市场的主流呢?下面我将分别介绍一下lcd、dlp 、lcos三种背投电视投影技术。

    2、 lcd背投技术

     lcd(liquid crystal display)背投的成像方式为穿透式,成像器件为液晶板,是一种被动式的投影方式。它利用外光源(金属卤素灯或uhp灯),因此只要提高灯泡的功率就可以提升亮度。它利用比较成熟的液晶投影技术,色彩还原性好,亮度和对比度都优于crt背投。随着技术的不断发展,目前困扰业界的灯泡寿命问题,也将得到较好的解决。目前lcd背投没有成为市场主流的原因主要在于其高成本。此外lcd背投,限于其工作原理上的原因,它的开机预热和关机后散热都需要时间,不能做到crt背投那样随开随关。

   lcd 投影机按照液晶板的片数分为三片式和单片式。目前,三片式投影机是液晶板投影机的主要机种,其原理示意图如下:

    三片式lcd板投影机原理是光学系统把光源发射的强光通过分光镜形成r、g、b三束光,分别透射过r、g、b三色液晶板;控制信号源经过a/d转换调制后,加到液晶板上,通过控制液晶单元的开启、闭合,从而控制r、g、b三色光路的通断,然后三色光经过合色光路,在合色棱镜中汇聚,最后经透镜投射后,在屏幕上形成彩色图像。

    3、 dlp背投技术

    dlp(digital light processing)指数字光处理技术,这种技术要先把影像讯号经过数字处理后再投影出来,其投影显示质量很好。与lcd背投的透射式成像不同,dlp为反射方式。其系统核心是ti(德州仪器)公司开发的数字微镜器件—dmd(digital micro mirror device),dmd是显示数字可视的最终环节,它是在cmos的标准半导体制程上,加上一个可调变反射面的旋转机构形成的器件。通常dmd 芯片有约130万个铰接安装的微镜,一个微镜对应一个像素。dlp背投的原理是用一个积分器(integrator)将光源均匀化,通过一个有色彩三原色的色环(color wheel),将光分成r、g、b三色,微镜向光源倾斜时,光反射到镜头上,相当于光开关的“开”状态。微镜向光源反方向倾斜时,光反射不到镜头上,相当于光开关的“关”状态。其灰度等级由每秒钟光开关,开关次数比来决定。因此采用同步信号的方法,处理数字旋转镜片的电信号,将连续光转为灰阶,配合r、g、b三种颜色而将色彩表现出来,最后投影成像,便可以产生高品质、高灰度等级的图像。

    目前dlp的投影机主要有单片dmd机、双片dmd机和三片dmd机。根据各自不同的特点,有着不同的应用。其中单片式主要应用在便携式投影产品,双片式应用于大型拼接显示墙而三片式主要应用于超高亮度投影机。一般dlp背投电视有普通彩电4-5倍的清晰度,而且有着高亮度、高对比度的优势,可达到1000:1的对比度。此外,由于数字技术的采用,使图像灰度等级提高,图像噪声消失,画面质量更稳定。但是,德州仪器公司目前是全球dmd芯片的惟一制造商,造成投影机的供给领域薄弱,核心部件供应量不足,成品率较低,价格昂贵,因此在一定程度上限制着这一产品的发展,此外从长远看dlp投影技术在超高分辨率(2000线以上)方面受到制约。

    4、 lcos背投技术

    lcos(liquid crystal on silicon)技术结合了半导体与lcd技术,其光学成像原理与dlp同为反射方式。与前述两种背投技术相比,优势在于高解析度、高亮度的特性,而且结构简单,成本降低潜力大。虽然在目前的背投应用方面,相对于流行的lcd技术及近期热门dlp投影技术而言,lcos仍不能与其抗衡,短期内在这三大技术中暂时屈居第三,但是lcos仍是相当被看好的、最具潜力的投影技术,随着其光学投影系统在重量、亮度上的不断改善,必将在背投电视市场占据显赫地位。此外,就我国高端背投彩电切入点来说,要建立自己的技术优势,lcos技术是目前的首选。由显示面板来看,在lcd技术领域日、韩占据着相当大的优势,我国台湾地区也只是占据了部分中、低端市场,dlp技术更是由ti独家控制着其核心器件dmd。而lcos技术尚未成熟,此时开发lcos,将有机会摆脱在lcd、dlp投影技术上受制于人的情况,因此可以说lcos是我国在高端彩电技术上取得领头地位的机会。目前我国台湾地区厂商在lcos技术开发方面相当积极,联电所主导的lcos联盟已经比较引人注目。HDTV的推广应用,必将加快lcos产业化进程。

    lcos显示面板其中一面以CMOS芯片为基板,无法让光线直接穿过,因此采用穿透式成像方式,因此其背投光学系统和lcd背投影机便产生了区别。通常lcos光学系统中需要利用偏极化分光镜(polarization beam splitter: pbs), 将入射lcos面板的光线与反射的光线分开。pbs是由两个45度等腰直角棱镜底边粘合的而成的棱镜,当非线性偏极化光入射pbs时,pbs会反射入射光的S偏振光(垂直入射线平面),并且让P偏振光(平行入射线平面)通过。关于lcos光学系统技术仍在起步阶段,所以ibm、colorquad、philip、hologram等多家厂商都开发了不同的lcos光学引擎架构。但主要可分为单片式和三片式两大类,如下:

    1)、单片式

    单片式lcos color wheel光学引擎示意图如下,r、g、b色环快速旋转将来自光源的白光分成循序的红、绿、蓝单色光。这三原色光与驱动程序产生的红、绿、蓝画面同步,便形成分色影像。频率足够快时,由于人眼视觉暂留的特性,观察者便可以看见彩色的投影画面。单片式光学引擎占用空间相对小,仅需一片面板,系统架构比较简单,因此在成本上具竞争优势。然而目前在技术上也面临一些困难,以color wheel而言,白光经过偏极化后,亮度明显降低,能量仅仅剩余1/3。此外,由于lcos面板要在红、蓝、绿画面快速的切换下合成影像,对面板反应速度的要求更高。目前类似的技术有:displaytech的field sequential color结构、philip的scrolling color-rotating prism结构、以及jvc的spatial color –hologram结构。

    2)、三片式

    三片式lcos光学引擎是目前市场采取的主要方式。这里以笔者曾经调试的一套三片式lcos光学引擎为例,介绍一下光路。以uhp灯泡为光源,光线首先经两重复眼透境使光线均一化,然后经过一层pbs棱镜和透镜,接下来经红、蓝、绿三色光的分光光路,再分别将光束投射入到三片lcos面板,反射的三色影像经过合色系统形成彩色影像,投射到屏幕。此系统中,用到了4个方棱镜、4个pbs棱镜、以及两个复眼透镜、和几个反射镜。由此可见三片式lcos光学引擎除了需要三片面板外,还需要结合多项的分色、合色光学系统,因此体积较大、成本也较高。但是可以达到较高的光学效率,lcos投影技术中,其面板的下基板采用cmos基板,其材质是单晶硅,拥有良好的电子移动率,而且单晶硅电路能做得很细,因此容易达到高解析度。此外,lcos为反射式成像,不会像 lcd光学引擎因光线穿透面板而大幅降低光利用率,因此有很高的光利率,可以较少耗电产生较高的亮度。并且具备高画质的特性,因此主要是朝高阶的专业用途发展,目前,三片式光学引擎还有colorlink采用的colorquard架构、philips的prism架构等。

    在此再简单介绍一下lcos显示驱动的特点。lcos显示技术中需要一块内建dram的图像控制芯片,主要包括脉冲时钟发生器、行驱动电路(移位寄存器和buffer)、列驱动电路(移位寄存器,buffer,锁存器)、d/a转换器和有源象素矩阵几部分。采用有源矩阵结构猪层写入数据,对于每个象素,其工作状态相当于静态驱动,这样对比度较高,几乎没有cross-talk。而其灰度等级由所加的脉冲宽度决定。每一个象素对应一个开关,并且在驱动芯片中一般占用四层金属,其中下面两层金属用来走线,在上面实现行和列方向的驱动电路连接;上面两层金属用来做光屏蔽 和反射面电极。视频工作原理如下图:每个象素是由一个mos管和一个存储电容组成。mos管的宽长尺寸主要考虑馈通对电路逻辑性能的影响,存储电容(图中cs)的容值由液晶的漏电常数和液晶自身电容值(图中clc)决定。

    驱动电压方面,采用了“逐场倒相”方式,把交互式电压加到液晶单元,防止在单方向电场作用下,液晶分子极性化,电场取向特性实效。具体操作过程是在第一场信号后,翻转数据线的脉冲波形,把正脉冲信号变为负脉冲信号,而保持扫描脉冲信号不变。对液晶及其存储电容进行充电时,为了省电我们在电路设计时选用了线性斜波的充电方式电。

    驱动电路系统结构方面,有模拟和数字两种。模拟方式中列方向通过横向的移位寄存器控制与视频相连接,行方向逐行开启,象素矩阵通过垂直的移位寄存器控制与列线相连。数字方式结构中每一个象素使用一个dac。为了解决dac无法限制在较小的像素内问题,我们可以加入锁存电路从而每行使用一个dac。
总的来说,crt、lcd、dlp 、lcos这几种背投电视技术各有优势。考虑到消费能力,crt在未来几年内仍将占据我国背投市场的主体;lcd就技术成熟度、应用范围方面看,是最有机会首先取代crt成为主流的技术;dlp是技术新贵,目前由展会展出情况看,声势超过了lcos(尤其在便携式投影机方面,dlp已经形成一定的产业规模,本文主要阐述在背投电视中的应用,因此不在此详细阐述);而lcos是最具成本优势潜力和图像质量优势的技术,随着人们对显示画面尺寸要求提升,同时追求电视画面更舒适、更清晰,lcos将具有最大的优势。