居无为 品书香手机网

主页 > 实用文摘 > 教育文摘_09 > > 详细内容

蓝牙收发芯片RF2968的原理及应用_无线通信论文

摘要:rf2968是一个单片蓝牙收发芯片,工作在2400~2500mhz频段,fsk调制和解调;芯片内含有射频发射、射频接收、fsk调制/解调等电路,能够接收和发送数字信号,符合蓝牙无线电规范1.1要求。文中给出rf2968的结构、原理、特性及应用电路。

    关键词:蓝牙 无线发射 无线接收 fsk

1 概述

rf2968是为低成本的蓝牙应用而设计的单片收发集成电路,rf频率范围2400~2500mhz,rf信道79个,步长1mhz,数据速率1mhz,频偏140~175khz,输出功率4dbm,接收灵敏度-85dbm,电源电压3v,发射消耗电流59ma,接收电流消耗49ma,休眠模式电流消耗250μa。芯片提供给全功能的fsk收发功能,中频和解调部分不需要滤波器或鉴频器,具有镜像抑制前端、集成振荡器电路、可高度编程的合成等电路。自动校准的接收和发射if电路能优化连接的性能,并消除人为的变化。rf2968可应用在蓝牙gsm/gprs/edge蜂窝电话、无绳电话、蓝牙无线局域网、电池供电的便携设备等系统中。

2 引脚功能

集成电路采用32脚的塑料lcc形式封装,各引脚功能如下:

vcc1:给vco(压控振荡器)倍频和lo(本机振荡器)放大器电路提供电压。

vcc2:给rx(接收)混频器、txpa(发射功率放大器)和lna(低噪声放大器)偏置电路提供电压。

txout:发射机输出。当发射工作时,txout输出阻抗是50Ω;当发射机不工作时,txout为高阻态。因为这个引脚是直流偏置,所以需外接1个耦合电容。

rxin:接收机输入。当接收机工作时,rx in输入阻抗是低阻态;接收机不工作时,rxin为高阻态。芯片内用1个内部串联电感来调节输入阻抗。

vcc3:给rx输入级(lna)提供电压。

vcc4:给tx混频器、lo放大器、lna和rx混频器的偏置电路提供电压。

lpo:低功耗模式的低频时钟输出。在休眠模式中,这个引脚能给基带提供一个3.2khz或32khz、占空比为50%的时钟。在其它工作方式没有输出。

dvddh:给rx if vga(接收中频电压增益放大器)电路提供电压。

ire f:外部接1个精密电阻以产生恒定的基准电流。

vcc5:给模拟中频电路提供电压。

d1:这是为时钟恢复电路提供的电荷泵输出。外接1个rc网络到地以确定pll的带宽。

bpktctl:在发射模式时,这个脚作为启动pa级的选通脉冲;在接收模式时,基带控制器可以有选择地使用这个引脚来给同步字的检测发信号。

bdata1:输入信号到发射机/接收机的数据输出。输入的数据是速率为1mhz的没有被滤波的数据。这个引脚是双向的,根据发射和接收模式转换为数据输入或数据输出。

recclk:恢复时钟输出。

recdata:恢复数据输出。

    bxtlen:功率控制电路的一部分,用来接通/关键芯片的“休眠”模式。在电路从“off”状态上电之后,当低功耗时钟不工作时,br clk被bxtlen的状态控制(上电期间,brclk先写bxtlen激活且被设为高电平,以进入空闲状态)。

bpclk:基准时钟输出。这是由晶振决定的基准时钟,频率范围为10~40mhz,典型值为13mhz。电路上电时,brclk在基带控制器将bxtlen设为高电平之前激活。电路进入空闲状态后,当低功耗时钟不工作时,brclk由bxtlen的状态控制。

osc o:与19脚相同。

osc i:osc脚可通过负反馈的方式来产生基准时钟。在soc i到osc o之间连接1个并联的晶振和电阻,以提供反馈通道和确定谐振频率。每一个osc脚都接1个旁路电容来提供合适的晶振负载。如果用1个外部的基准频率,那就要通过1个隔直电容来连接到osc i,并且用1个470kΩ的电阻将osc o和osc i连接起来。

bnden:锁存输入到串行端口的数据。数据在bnden的上升沿被锁存。

    bddata:串行数据通道。读/写数据通过这个引脚送入/输出到芯片上的移位寄存器。读取的数据在bdclk的上升沿被传送,写数据在bdclk的下降沿被传送。

bdclk:串行端口的输入时钟。这个引脚被用来将时钟信号输入到串行端口。要使得跳变频率的编程时间最短时,建议使用10~20mhz的brclk频率。

bnpwr:芯片电源控制电路的一部分,用来控制芯片从“off”状态到电源接通状态。

pllgnd:rf合成器、晶体振荡器和串行端口的接地端。

vcc6:rf合成器、晶体振荡器和串行端口的电源端。

do:rf pll的充电泵输出。外接1个rc网络到地以确定pll带宽。要使得合成器的设置时间和相位噪声最小,可采用双重的环路带宽方案。在频率检测的开始时期,使用1个宽环路带宽。在检测频率结束时,用rshunt来转换到窄环路带宽,并提供改进的vco相位噪声。带宽转换的时间由pll del位设置。

rshunt:通过将2个外部串联电阻的中点分路到vreg,使环路滤波器从窄带转换到宽带。

resntr-:用来给vco提供直流电压以及调节vco的中心频率。在resntr-和resntr+之间需2个电感来跟内部电容形成谐振。在设计印制板时,应该考虑从resntr脚到电感器的感抗。可以在resntr脚之间加1个小电容来确定vco的频率范围。

resntr+:见引脚28。

vreg:电压调节输出(2.2v)。需1个旁路电容连接到地。通过与28脚和29脚相连的回路给vco提供偏置。

ifdgnd:数字中频电路接地端。

vcc7:数字中频电路电源电压。

3 内部结构

rf2968是专为蓝牙的应用而设计,工作在2.4ghz频段的收发机。符合蓝牙无线电规范1.1版本功率等级二(+4 dbm)或等级三(0 dbm)要求。对功率等级1(+20 dbm)的应用,rf2968可以和功率放大器搭配使用,如rf2172。rf2968的内部框图如图1所示。芯片内包含有发射器、接收器、vco、时钟、数据总线、芯片控制逻辑等电路。

由于芯片内集成了中频滤波器,rf2968只需最少的外部器件,避免外部如中频saw滤波器和对称一不对称变换器等器件。接收机输入和发射输出的高阻状态可省去外部接收机/发射机转换开关。rf2968和天线、rf带通滤波器、基带控制器连接,可以实现完整的蓝牙解决方案。除rf信号处理外,rf3968同样能完成数据调制的基带控制、直流补偿、数据和时钟恢复功能。

rf2968发射机输出在内部匹配到50Ω,需要1个ac耦合电容。接收机的低噪声放大器输入在内部匹配50Ω阻抗到前端滤波器。接收机和发射机在txout和rxin间连接1个耦合电容,共用1个前端滤波器。此外,发射通道可以通过外部的放大器放大到+20dbm,接通rf2968的发射增益控制和接收信号强度指示,可使蓝牙工作在功率等级一。rssi数据经串联端口输入,超过-20~80dbm的功率范围时提供1db的分辨率。发射增益控制在4db步阶内调制,可经串联端口设置。

基带数据经bdata1脚送到发射机。bdata1脚是双向传输引脚,在发射模式作为输入端,接收模式作为输出端。rf2968实现基带数据的高斯滤波、fsk调制中频电流控制的晶体振荡器(ico)和中频if上变频到rf信道频率。

片内压控振荡器(vco)产生的频率为本振(lo)频率的一半,再通过倍频到精确的本振频率。在resntr+和resntr-间的2个外部回路电感设置vco的调节范围,电压从片内调节器输给vco,调节器通过1个滤波网络连接在2个回路电感的中间。由于蓝牙快速跳频的需要,环路滤波器(连接到do和rshunt)特别重要,它们决定vco的跳变和设置时间。所以,极力推荐使用电路图中提供的元件值。

rf2968可以使用10mhz、11mhz、12mhz、13mhz或20mhz的基准时钟频率,并能支持这些频率的2倍基准时钟。时钟可由外部基准时钟通过隔直电容直接送到osc1脚。如果没有外部基准时钟,可以用晶振和2个电容组成基准振荡电路。无论是外部或内部产生的基准频率,使用1个连接在osc1和osc2之间的电阻来提供合适的偏置。基准频率的频率公差须为20×10 -6或更好,以保证最大允许的系统频率偏差保持在rf2968的解调带宽之内。lpo脚用3.2khz或32khz的低功率方式时钟给休眠模式下的基带设备提供低频时钟。考虑到最小的休眠模式功率消耗,并灵活选择基准时钟频率,可选用12mhz的基准时钟。

接收机用低中频结构,使得外部元件最少。rf信号向下变频到1mhz,使中频滤波器可以植入到芯片中。解调数据在bdata1脚输出,进一步的数据处理用基带pll数据和时钟恢复电容完成。d1是基带pll环路滤波器的连接脚。同步数据和时钟在redata和recclk脚输出。如果基带设备用rf2968做时钟恢复,d1环路滤波器可以略去不用。

4 应用

rf2968射频收发机作为蓝牙系统的物理层(phy),支持在层和基带设备之间的blue rf(蓝牙射频)接口。

rf2968和基带间有2个接口。串行接口提供控制数据交换的通道,双向接口提供调制解调、定时和芯片功率控制信号的通道。基带控制器与rf2968接口如图2所示。

控制数据通过dbus串行接口协议的方式在rf2968和基带控制器之间交换。bdclk、bddata和bnden都是符合串行接口的信号。基带控制器是主控设备,它启动所有到rf2968寄存器存取操作,rf2968数据寄存器可被编程,或者根据具体命令格式和地址被检索。数据包首先传送msb。串行数据包的格式如表1所列。

表1 串行数据包格式

位   数注    释
设备地址3[a7:a5]层为“101”
读/写1[r/w]“1”为读,“0”为写
寄存器地址5[a4:a0]32个寄存器的最大值
数据16[d15:d0]rf2968在写模式编程,在读模式返回寄存器的内容

“写”周期,基带控制器在bdclk下降沿驱动数据包的每一位,rf2968在数据寄存器设为高状态后,在bdclk第1个下降沿到来时被移位寄存器的内容更新,如图3所示。

在读操作中,基带控制器发出设备地址、read位(r/w=1)和寄存器地址给rf2968,再跟1个持续半个时钟周期的翻转位。这个翻转位允许rf2968在bdclk的上升沿通过bddata驱动它的请求信号。数据位传输后,基带控制器驱动bnden为高电平,在第1个bdclk脉冲的下降沿到来时重新控制bddata,如图4所示。

寄存器地址域可寻址32个寄存器,rf2968仅提供3~7和30、31的寄存器地址。通过设置寄存器的数据可实现不同的功能。

双向接口完成数据交换、定时和状态机控制。所有双向同步(定时)来自brclk,brclk由rf2968产生。rf2968使用brclk的下降沿。图5给出当数据从rf2968传给基带控制器时的通用定时。

rf2968的芯片控制电路控制芯片内其它电路的掉电和复位状态,把设备设置为所需要的发射、接收或功率节省模式。芯片的控制输入经双向接口从基带控制器(bnpwr、bxtlen、bpktctl、bdata1)输入,也可从dbus提供(rxen、txen)输出端的寄存器输入。基带控制器和rf2968内的状态机维持在控制双向数据线方向的状态。基带控制器控制rf2968内的状态机,并保证数据争用不会在复位和正常工作期间发生。rf2968常用的状态有:

off状态——所有电路掉电且复位,设置数据丢失。

idle状态——待机模式。数据被读入到控制寄存器中,振荡器保持工作,所有其它电路掉电。

sleep状态——芯片通常从idle模式进入这种模式。此时,所有电路掉电,但不复位,因此数据得以保留。电路同样可从其它模式进入sleep模式,但txen和rxen状态不变,以便tx和rx电路保持导通。

tx data状态——数据在这种模式发射(合成器稳定,数据信道同步)。

rx data状态——接收的数据经bdata1(不同步)和redata(和recclk同步)发送到基带电路。

rf2968的一个典型的应用电路(gsm电话)如图6所示。