学海荡舟手机网

主页 > 实用文摘 > 教育文摘_08 > > 详细内容

长方体物体的包装_五年级数学教案

教学目标

 1.联系长方体表面积在生活中的运用,培养用知识解决问题的意识.

 2.在摆、算、想象、猜想等学习活动中,培养有序思考、合理分类、化繁为简的思维方法,并发展空间观念.

 3.会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化.

 4.能用准确的语言描述思考过程.

 教学过程

 一、引入.

 师:生活中,常把几个长方体物体包成一个大长方体.这样就会有各种各样的包装.

 间相互交流了解的情况.

 师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?

 生:火柴盒、香烟盒或药盒等.

 师:这节课,我们一起来讨论、研究长方体物体的包装问题.(揭题).

 二、展开.

 1.师:下面我们研究两个相同长方体物体的包装情况.想一想:用两个相同的长方体物体包装,会有几种不同的包法?

 2.试一试:要求摆得出,还要说得明白.

 交流:有哪几种?为了方便表达,最大面用字母a表示,次大面用字母b表示,最小面用字母c表示.

 归纳:三种不同包法:a面重叠(上下叠);b面重叠(前后叠);c面重叠(左右叠).

 3.师:现在研究6个相同长方体物体的包装情况.2个有三种不同摆法,6个有几种呢?你能很快猜出有几种吗?

 生:6、7、8、9、10、12种等.

 师:那么,究竟有几种呢?想试试吗?(生:想!)

 师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?

 合作学习

 (1)小组摆、交流.教师在巡视时及时向同学们推荐了同学中作记录的学习方法.并问:为什么要记呢?

 生:包装方式多,记一记,不会重复.

 (2)大组交流、汇报.

 两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上.

 汇报:总共有9种不同的包法.(见下图)

 师生归纳:按接触面思考:a、b、c各一种;ab、ac、bc各两种.

 师:这种方法怎么样?它是按什么思考的?

 生:按接触面来思考;这样思考有序,不容易漏掉.

 师:还有其他思考方法吗?能不能将问题简化,比如以两个一组作为一个整体,将两个a面重叠(上下叠)的长方体看作一个大长方体,这样就转化为3个长方体的包装问题了,可以有几种包法?

 生:按上下、前后、左右的方向拼摆,有3种包法.

 师:大家从中受到什么启发?还可以怎样考虑?.

 生:哦,我明白了!还可以将两个b面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法.

 生:还可以将两个c面重叠(前后叠)的长方体看作…….

 生:(抢着说)对,对!它也有3种包法.因此6个长方体共有3×3=9种不同的包法.

 师:这种方法怎么样?

 生:这种方式很好,很清楚.

 师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体.2个小长方体间的位置不同,就得到了3个不同长方体的包装问题.这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要.

 4.师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算.

 生:都是c面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的a面重叠、ab、ac面重叠的包装样式表面积较小,因为重叠部分面积较大……

 师:哪个表面积更小些呢?

 生:可以算一算.

 师:假设a面面积为6,b面为3,c面为2.

 生:6×2+3×12+2×12=72,6×4+3×6+2×12=66,6×4+3×12+2×6=72.这几个表面积都比较小.

 三、讨论现实生活中的各种包装.

 教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法.

 打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省.

 师:是不是厂商对商品的包装都考虑节省材料呢?

 生:不一定.

 师:分小组,互相观察带来的其他物品,说说自己的看法.

 纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,  有的考虑方便……不同的需要就有不同的标准.

 四、小结.

 师:这节课对你有什么启示?

 生:生活中有许多事,可以用方法来解决;包装这一小问题,学问可不小;我们可以用一定的标准选择方案……

 

探究活动


 

设计包装盒

 活动目的

 发展学生的空间观念,培养用知识解决问题的意识.

 活动题目

 某工厂生产a、b、c、d、e五种产品.厂方要设计师设计一种通用的包装盒子,能包装这五种产品中任一种.设计师按要求设计了如下图中所示的包装盒子.

 五种产品:

 包装盒子:

 厂方负责人看了设计师设计的包装盒后,不满意,认为太浪费了,根本不需要设计成十二格的长方体,只要放得下产品就可以了.于是设计师改进了方案,设计了最少体积的盒子.同学们,你们知道盒子的体积有多大吗?(即由几个小立方体组成)形状是怎样的?

 活动方法

 利用学具分小组拼摆

 参考答案