学海荡舟手机网

主页 > 实用文摘 > 教育文摘_05 > > 详细内容

三角形全等的判定1_八年级数学教案


课题:全等三角形的判定(一)

 教学目标

 1、知识目标:

 (1)熟记边角边公理的内容;

 (2)能应用边角边公理证明两个三角形全等.

 2、能力目标:

 (1) 通过“边角边”公理的运用,提高的逻辑思维能力;

 (2) 通过观察几何图形,培养的识图能力.

 3、情感目标:

 (1) 通过几何证明的教学,使养成尊重客观事实和形成质疑的习惯;

 (2) 通过自主学习的发展体验获取知识的感受,培养勇于创新,多方位审视问题的创造技巧.

 教学重点:学会运用公理证明两个三角形全等.

 教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

 教学用具:直尺、微机

 教学方法:自学辅导式

 教学过程

 1、公理的发现

 (1)画图:(投影显示)

 教师点拨,边学边画图.

 (2)实验

 让把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

 这里一定要让动手操作.

 (3)公理

 启发发现、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“sas”)

 作用:是证明两个三角形全等的依据之一.

 应用格式:

 

 强调:

 1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

 2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

 3、平面几何中常要证明角相等和线段相等,其证明常用方法:

 证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

 证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

 2、公理的应用

 (1)讲解例1.分析完成,教师注重完成后的.

 

 分析:(设问程序)

 “sas”的三个条件是什么?

 已知条件给出了几个?

 由图形可以得到几个条件?

 解:(略)

 (2)讲解例2

 投影例2:

 例2如图2,ae=cf,ad∥bc,ad=cb,

 求证:

 学生思考、分析,适当点拨,找代表口述证明思路

 让学生在练习本上定出证明,一名板书.教师强调

 证明格式:用大括号写出公理的三个条件,最后写出

 结论.(3)讲解例3(投影)

 

 证明:(略)

 分析思路,写出证明过程.

 (投影展示的作业,教师点评)

 (4)讲解例4(投影)

 

 证明:(略)

 口述过程.投影展示证明过程.

 教师强调证明线段相等的几种常见方法.

 (5)讲解例5(投影)

 

 证明:(略)

 思考、分析、讨论,教师巡视,适当参与讨论.

 师生共同讨论后,让口述证明思路.

 教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.

 3、课堂小结:

 (1)判定三角形全等的方法:sas

 (2)公理应用的书写格式

 (3)证明线段、角相等常见的方法有哪些?

 让学生自由表述,其它补充,自己将知识系统化,以自己的方式进行建构.

 6、布置作业

 a书面作业p56#6、7

 b上交作业p57b组1

 思考题:

 

 板书设计

探究活动

 如图,a、b两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达a和b的点c,连结ac并延长到d,使cd=ca;连结bc并延长到e,使ce=cb,最后再连结de,这时量得de长就是a、b的距离,说明为什么.

 提示: 利用三角形全等的判定(一)来说明.